U. Simon, F. Niemeyer

SiSo Aufgabe 1

Exercise 1 3-Point Bending Using the Static Structural Module of Ansys Workbench 14.0 Contents Learn how to … ................................................................................................................................................................................1 Given ...................................................................................................................................................................................................2 Questions ...........................................................................................................................................................................................2 Taking advantage of symmetries...............................................................................................................................................2 A. Getting started...........................................................................................................................................................................3 A.1 Choose the correct ANSYS license .............................................................................................................................3 A.2 Start the FE software ANSYS .......................................................................................................................................3 B. Preprocessor (Setting up the Model).................................................................................................................................4 B.1 Build the Geometry Using DesignModeler Module ...............................................................................................4 B.2 Material Properties ..........................................................................................................................................................6 i. Define Material Properties .......................................................................................................................................6 B.3 Meshing ................................................................................................................................................................................8 B.4 Applying Loads and Boundary Conditions ...............................................................................................................9 i. Boundary Conditions ..................................................................................................................................................9 ii. Applying the Loads ......................................................................................................................................... 10 A. Solving ....................................................................................................................................................................................... 11 a. Contour Plot of Deformed Shape ............................................................................................................................ 11 b. Contour Plot: X-Component of Total Strain ........................................................................................................ 12 c. Contour Plot X-Component of Stress ..................................................................................................................... 13 d. Contour Plot: Von-Mises Equivalent Stress ......................................................................................................... 15 Answering the Questions: ......................................................................................................................................................... 15

Learn how to …

use the ANSYS Workbench DesignModeler build a model take advantage of symmetries perform a full analysis consisting of pre-processing, solution and post-processing

Page 1 of 15

U. Simon, F. Niemeyer

SiSo Aufgabe 1

Given Beam under 3-point bending with a centric applied force F as shown in Figure 1

F

h

t

w

L Figure 1: Beam under 3-point bending.

Relevant geometrical and material data for our problem are given in Table 1: F L h t E ν σyield

= 500,000 N = 2,000 mm = 60 mm = 20 mm = 210,000 N/mm2 = 0.3 = 235 N/mm2

Applied force Length of the beam Height of the beam cross section Thickness of the beam cross section Young’s modulus Poisson’s ration Allowable stress: yield stress of steel

Table 1: Geometry and material data.

Questions Due to this classic 2-dimensional mechanical problem we can state two questions: 1. Will the beam break and were would it start breaking? 2. If not, what would be the maximum deflection w?

Taking advantage of symmetries Can we take advantage of symmetries? Please, draw a simplified beam model which takes advantage of symmetry!

Figure 2: Space for drawing of simplified beam model taking advantage of symmetry.

Page 2 of 15

U. Simon, F. Niemeyer

SiSo Aufgabe 1

A. Getting started A.1 Choose the correct ANSYS license Before starting ANSYS Workbench, run “User License Preferences 14.0” and ensure that “ANSYS Academic Teaching Advanced” is the preferred license (Figure 3).

Figure 3: Select “ANSYS Academic Teaching Advanced” as the preferred license by moving it to the top of the list.

A.2 Start the FE software ANSYS Start ANSYS Workbench by running “Workbench 14.0” (Figure 4).

Figure 4: Starting ANSYS Workbench 14.0

Page 3 of 15

U. Simon, F. Niemeyer

SiSo Aufgabe 1

B. Preprocessor (Setting up the Model)

Figure 5: Interface of ANSYS Workbench 14.0

B.1 Build the Geometry Using DesignModeler Module To begin; drag the Static Structural Module from the Analysis Systems toolbox and drop into the Project Schematic (Figure 6) and double click on the Geometry submodule to open the DesignModeler. When asked, choose the desired unit system. Choose Create → Primitives → Box from the main menu to create a beam by entering the desired dimensions in the Details box (Figure 7). Hit the Generate button to actually create the geometry. When specifying the dimension of the beam, make sure that the origin of the coordinate system is located on the center of the beam’s cross section. The beam axis must be oriented along the global x-axis.

Page 4 of 15

U. Simon, F. Niemeyer

SiSo Aufgabe 1

Figure 6: Drag-and-drop the Static Structural module to create a new analysis.

Figure 7: The beam on the DesignModeler

Note that ANSYS Workbench saves the model automatically; you can simply close DesignModeler now and continue with the next step.

Page 5 of 15

U. Simon, F. Niemeyer

SiSo Aufgabe 1

B.2 Material Properties i. Define Material Properties Materials define the mechanical behavior of the FE model. We will use a simple linearelastic, isotropic material model. In the project schematic, right click on Engineering Data to open a context menu and choose Edit… (Figure 8).

Figure 8: Edit engineering data

Enter a name for your new material in row 4 (Figure 9).

Figure 9: Naming the new material

Choose the simplest available material model by dragging the item Isotropic Elasticity from the Toolbox and dropping it onto the row with your newly defined material (Figure 10). Isotropic Elasticity requires certain material parameters: Young’s Modulus and Poisson’s Ratio.

Page 6 of 15

U. Simon, F. Niemeyer

SiSo Aufgabe 1

After you entering the appropriate parameters do not forget to push Return to Project button and to update the project

Figure 10: Define the material properties.

Page 7 of 15

U. Simon, F. Niemeyer

SiSo Aufgabe 1

B.3 Meshing To mesh the solid body select double click the Model sub-module in the Project schematic to open the Mechanical module (Figure 11).

Figure 11: Starting the meshing and analysis module

Right click on Mesh in the Structure Tree and select a meshing method (Figure 12). Mesh (right click) Insert Mapped Mesh

Figure 12: Setup meshing details

Page 8 of 15

U. Simon, F. Niemeyer

SiSo Aufgabe 1

At this point focus on the Details box and select the geometry (all 6 faces) and do not forget to update the project; then click the Generate button.

Figure 13: Meshed body

B.4 Applying Loads and Boundary Conditions i. Boundary Conditions To setup the necessary support: Structure Tree Static-Mechanic (right click) Insert Fixed Support Select the Face you want to assign as a fixed support.

Figure 14: Fixed Face of the body

Page 9 of 15

U. Simon, F. Niemeyer ii.

SiSo Aufgabe 1

Applying the Loads

Structure Tree Static-Mechanic (right click) Insert Force Select the Face you want to assign a force on this surface. Assign the components of the force vector. Now the problem is ready to be solved.

Figure 15: Applied force

Figure 16: Fixed face of the body and applied force

Page 10 of 15

U. Simon, F. Niemeyer

SiSo Aufgabe 1

A. Solving To solve the problem add some solving tools to the Solution node which is part of the Structure tree. Solution (right click) Total Deformation Solution (right click) Total Strain Solution (right click) Total Stress Solution (right click) Von-Mises Equivalent Stress Click Solve

Figure 17: Required solving tools

a. Contour Plot of Deformed Shape

Figure 17: SCALED Displacement solution (z direction) of the beam (with too high force).

Page 11 of 15

U. Simon, F. Niemeyer

SiSo Aufgabe 1

Figure 18: UNSCALED Displacement solution (z direction) of the beam (with too high force).

Correcting the Model: The value of the applied force was erroneously too high and should be corrected from 500,000 to 5,000 Newton. Structure tree Force Details Change the value of the force 500,000 to 5,000 N and click to Solve.

Figure 19: Deformed shape of the beam resulting from corrected force.

b. Contour Plot: X-Component of Total Strain Structure Tree Total Strain and Details Direction X-axis Page 12 of 15

U. Simon, F. Niemeyer

SiSo Aufgabe 1

Figure 17: Details of total strain

Figure 20: Contour plot of x-component of total strain.

c. Contour Plot X-Component of Stress Structure Tree Total Stress and Details Direction X-axis

Page 13 of 15

U. Simon, F. Niemeyer

SiSo Aufgabe 1

Figure 21: Details of total stress

Figure 22: Contour plot of x-component of stress.

Page 14 of 15

U. Simon, F. Niemeyer

SiSo Aufgabe 1

d. Contour Plot: Von-Mises Equivalent Stress

Figure 22: Contour plot of Von-Mises equivalent stress.

Answering the Questions: 1 Will the beam break and were would it start breaking? With the corrected force (F = 5,000 N) the beam will not break. The maximal predicted von Mises stress reaches values of σpred = 206 N/mm2, whereas the ultimate yield stress σyield = 235 N/mm2 is higher. That means the failure criterion σpred > σyield is not fulfilled. However, the difference between the two values is small. In many technical applications the factor of security should be 2.0 or even higher. The factor of security σyield/σpred reached in our example is much smaller. The critical region, were we would expect the beginning of a failure, is located at the left end of the half beam, Symbol MX) at the location of maximum stresses. For the full length beam the critical region would lay in the middle where the force was applied (Figure 1). 2 If not, what would be the maximum deflection w? We predicted a maximum deflection of w = 11 mm appearing at the free end (right side, symbol MX) of the simplified half model. The full length beam under 3-point-bending (Figure 1) will show a maximum deflection of the same amount in the middle.

Page 15 of 15

SiSo Aufgabe 1

Exercise 1 3-Point Bending Using the Static Structural Module of Ansys Workbench 14.0 Contents Learn how to … ................................................................................................................................................................................1 Given ...................................................................................................................................................................................................2 Questions ...........................................................................................................................................................................................2 Taking advantage of symmetries...............................................................................................................................................2 A. Getting started...........................................................................................................................................................................3 A.1 Choose the correct ANSYS license .............................................................................................................................3 A.2 Start the FE software ANSYS .......................................................................................................................................3 B. Preprocessor (Setting up the Model).................................................................................................................................4 B.1 Build the Geometry Using DesignModeler Module ...............................................................................................4 B.2 Material Properties ..........................................................................................................................................................6 i. Define Material Properties .......................................................................................................................................6 B.3 Meshing ................................................................................................................................................................................8 B.4 Applying Loads and Boundary Conditions ...............................................................................................................9 i. Boundary Conditions ..................................................................................................................................................9 ii. Applying the Loads ......................................................................................................................................... 10 A. Solving ....................................................................................................................................................................................... 11 a. Contour Plot of Deformed Shape ............................................................................................................................ 11 b. Contour Plot: X-Component of Total Strain ........................................................................................................ 12 c. Contour Plot X-Component of Stress ..................................................................................................................... 13 d. Contour Plot: Von-Mises Equivalent Stress ......................................................................................................... 15 Answering the Questions: ......................................................................................................................................................... 15

Learn how to …

use the ANSYS Workbench DesignModeler build a model take advantage of symmetries perform a full analysis consisting of pre-processing, solution and post-processing

Page 1 of 15

U. Simon, F. Niemeyer

SiSo Aufgabe 1

Given Beam under 3-point bending with a centric applied force F as shown in Figure 1

F

h

t

w

L Figure 1: Beam under 3-point bending.

Relevant geometrical and material data for our problem are given in Table 1: F L h t E ν σyield

= 500,000 N = 2,000 mm = 60 mm = 20 mm = 210,000 N/mm2 = 0.3 = 235 N/mm2

Applied force Length of the beam Height of the beam cross section Thickness of the beam cross section Young’s modulus Poisson’s ration Allowable stress: yield stress of steel

Table 1: Geometry and material data.

Questions Due to this classic 2-dimensional mechanical problem we can state two questions: 1. Will the beam break and were would it start breaking? 2. If not, what would be the maximum deflection w?

Taking advantage of symmetries Can we take advantage of symmetries? Please, draw a simplified beam model which takes advantage of symmetry!

Figure 2: Space for drawing of simplified beam model taking advantage of symmetry.

Page 2 of 15

U. Simon, F. Niemeyer

SiSo Aufgabe 1

A. Getting started A.1 Choose the correct ANSYS license Before starting ANSYS Workbench, run “User License Preferences 14.0” and ensure that “ANSYS Academic Teaching Advanced” is the preferred license (Figure 3).

Figure 3: Select “ANSYS Academic Teaching Advanced” as the preferred license by moving it to the top of the list.

A.2 Start the FE software ANSYS Start ANSYS Workbench by running “Workbench 14.0” (Figure 4).

Figure 4: Starting ANSYS Workbench 14.0

Page 3 of 15

U. Simon, F. Niemeyer

SiSo Aufgabe 1

B. Preprocessor (Setting up the Model)

Figure 5: Interface of ANSYS Workbench 14.0

B.1 Build the Geometry Using DesignModeler Module To begin; drag the Static Structural Module from the Analysis Systems toolbox and drop into the Project Schematic (Figure 6) and double click on the Geometry submodule to open the DesignModeler. When asked, choose the desired unit system. Choose Create → Primitives → Box from the main menu to create a beam by entering the desired dimensions in the Details box (Figure 7). Hit the Generate button to actually create the geometry. When specifying the dimension of the beam, make sure that the origin of the coordinate system is located on the center of the beam’s cross section. The beam axis must be oriented along the global x-axis.

Page 4 of 15

U. Simon, F. Niemeyer

SiSo Aufgabe 1

Figure 6: Drag-and-drop the Static Structural module to create a new analysis.

Figure 7: The beam on the DesignModeler

Note that ANSYS Workbench saves the model automatically; you can simply close DesignModeler now and continue with the next step.

Page 5 of 15

U. Simon, F. Niemeyer

SiSo Aufgabe 1

B.2 Material Properties i. Define Material Properties Materials define the mechanical behavior of the FE model. We will use a simple linearelastic, isotropic material model. In the project schematic, right click on Engineering Data to open a context menu and choose Edit… (Figure 8).

Figure 8: Edit engineering data

Enter a name for your new material in row 4 (Figure 9).

Figure 9: Naming the new material

Choose the simplest available material model by dragging the item Isotropic Elasticity from the Toolbox and dropping it onto the row with your newly defined material (Figure 10). Isotropic Elasticity requires certain material parameters: Young’s Modulus and Poisson’s Ratio.

Page 6 of 15

U. Simon, F. Niemeyer

SiSo Aufgabe 1

After you entering the appropriate parameters do not forget to push Return to Project button and to update the project

Figure 10: Define the material properties.

Page 7 of 15

U. Simon, F. Niemeyer

SiSo Aufgabe 1

B.3 Meshing To mesh the solid body select double click the Model sub-module in the Project schematic to open the Mechanical module (Figure 11).

Figure 11: Starting the meshing and analysis module

Right click on Mesh in the Structure Tree and select a meshing method (Figure 12). Mesh (right click) Insert Mapped Mesh

Figure 12: Setup meshing details

Page 8 of 15

U. Simon, F. Niemeyer

SiSo Aufgabe 1

At this point focus on the Details box and select the geometry (all 6 faces) and do not forget to update the project; then click the Generate button.

Figure 13: Meshed body

B.4 Applying Loads and Boundary Conditions i. Boundary Conditions To setup the necessary support: Structure Tree Static-Mechanic (right click) Insert Fixed Support Select the Face you want to assign as a fixed support.

Figure 14: Fixed Face of the body

Page 9 of 15

U. Simon, F. Niemeyer ii.

SiSo Aufgabe 1

Applying the Loads

Structure Tree Static-Mechanic (right click) Insert Force Select the Face you want to assign a force on this surface. Assign the components of the force vector. Now the problem is ready to be solved.

Figure 15: Applied force

Figure 16: Fixed face of the body and applied force

Page 10 of 15

U. Simon, F. Niemeyer

SiSo Aufgabe 1

A. Solving To solve the problem add some solving tools to the Solution node which is part of the Structure tree. Solution (right click) Total Deformation Solution (right click) Total Strain Solution (right click) Total Stress Solution (right click) Von-Mises Equivalent Stress Click Solve

Figure 17: Required solving tools

a. Contour Plot of Deformed Shape

Figure 17: SCALED Displacement solution (z direction) of the beam (with too high force).

Page 11 of 15

U. Simon, F. Niemeyer

SiSo Aufgabe 1

Figure 18: UNSCALED Displacement solution (z direction) of the beam (with too high force).

Correcting the Model: The value of the applied force was erroneously too high and should be corrected from 500,000 to 5,000 Newton. Structure tree Force Details Change the value of the force 500,000 to 5,000 N and click to Solve.

Figure 19: Deformed shape of the beam resulting from corrected force.

b. Contour Plot: X-Component of Total Strain Structure Tree Total Strain and Details Direction X-axis Page 12 of 15

U. Simon, F. Niemeyer

SiSo Aufgabe 1

Figure 17: Details of total strain

Figure 20: Contour plot of x-component of total strain.

c. Contour Plot X-Component of Stress Structure Tree Total Stress and Details Direction X-axis

Page 13 of 15

U. Simon, F. Niemeyer

SiSo Aufgabe 1

Figure 21: Details of total stress

Figure 22: Contour plot of x-component of stress.

Page 14 of 15

U. Simon, F. Niemeyer

SiSo Aufgabe 1

d. Contour Plot: Von-Mises Equivalent Stress

Figure 22: Contour plot of Von-Mises equivalent stress.

Answering the Questions: 1 Will the beam break and were would it start breaking? With the corrected force (F = 5,000 N) the beam will not break. The maximal predicted von Mises stress reaches values of σpred = 206 N/mm2, whereas the ultimate yield stress σyield = 235 N/mm2 is higher. That means the failure criterion σpred > σyield is not fulfilled. However, the difference between the two values is small. In many technical applications the factor of security should be 2.0 or even higher. The factor of security σyield/σpred reached in our example is much smaller. The critical region, were we would expect the beginning of a failure, is located at the left end of the half beam, Symbol MX) at the location of maximum stresses. For the full length beam the critical region would lay in the middle where the force was applied (Figure 1). 2 If not, what would be the maximum deflection w? We predicted a maximum deflection of w = 11 mm appearing at the free end (right side, symbol MX) of the simplified half model. The full length beam under 3-point-bending (Figure 1) will show a maximum deflection of the same amount in the middle.

Page 15 of 15